Definition
The formal definition of an iterated function on a set X follows.
Let X be a set and f: X → X be a function.
Define f n as the n-th iterate of f, where n is a non-negative integer, by:
and
where idX is the identity function on X and denotes function composition; that is, .
Because the notation f n may refer to both iteration (composition) of the function f and exponentiation of the function f, some mathematicians choose to write f °n for the n-th iterate of the function f.
Read more about this topic: Iterated Function
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“... we all know the wags definition of a philanthropist: a man whose charity increases directly as the square of the distance.”
—George Eliot [Mary Ann (or Marian)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)