Analysis of Model Fit
As with any use of mathematical models, it is important to assess the fit of the data to the model. If item misfit with any model is diagnosed as due to poor item quality, for example confusing distractors in a multiple-choice test, then the items may be removed from that test form and rewritten or replaced in future test forms. If, however, a large number of misfitting items occur with no apparent reason for the misfit, the construct validity of the test will need to be reconsidered and the test specifications may need to be rewritten. Thus, misfit provides invaluable diagnostic tools for test developers, allowing the hypotheses upon which test specifications are based to be empirically tested against data.
There are several methods for assessing fit, such as a chi-square statistic, or a standardized version of it. Two and three-parameter IRT models adjust item discrimination, ensuring improved data-model fit, so fit statistics lack the confirmatory diagnostic value found in one-parameter models, where the idealized model is specified in advance.
Data should not be removed on the basis of misfitting the model, but rather because a construct relevant reason for the misfit has been diagnosed, such as a non-native speaker of English taking a science test written in English. Such a candidate can be argued to not belong to the same population of persons depending on the dimensionality of the test, and, although one parameter IRT measures are argued to be sample-independent, they are not population independent, so misfit such as this is construct relevant and does not invalidate the test or the model. Such an approach is an essential tool in instrument validation. In two and three-parameter models, where the psychometric model is adjusted to fit the data, future administrations of the test must be checked for fit to the same model used in the initial validation in order to confirm the hypothesis that scores from each administration generalize to other administrations. If a different model is specified for each administration in order to achieve data-model fit, then a different latent trait is being measured and test scores cannot be argued to be comparable between administrations.
Read more about this topic: Item Response Theory
Famous quotes containing the words model and/or fit:
“If the man who paints only the tree, or flower, or other surface he sees before him were an artist, the king of artists would be the photographer. It is for the artist to do something beyond this: in portrait painting to put on canvas something more than the face the model wears for that one day; to paint the man, in short, as well as his features.”
—James Mcneill Whistler (18341903)
“There never seems to be any difficulty in stretching the laws and the constitution to fit any kind of a political deal, but when it is proposed to make some concession to women they loom up like an unscalable wall.”
—Susan B. Anthony (18201906)