Isosceles Trapezoid - Diagonals and Height

Diagonals and Height

The diagonals of an isosceles trapezoid have the same length; that is, every isosceles trapezoid is an equidiagonal quadrilateral. Moreover, the diagonals divide each other in the same proportions. As pictured, the diagonals AC and BD have the same length (AC = BD) and divide each other into segments of the same length (AE = DE and BE = CE).

The ratio in which each diagonal is divided is equal to the ratio of the lengths of the parallel sides that they intersect, that is,

The length of each diagonal is, according to Ptolemy's theorem, given by

where a and b are the lengths of the parallel sides AD and BC, and c is the length of each leg AB and CD.

The height is, according to the Pythagorean theorem, given by

The distance from point E to base AD is given by

where a and b are the lengths of the parallel sides AD and BC, and h is the height of the trapezoid.

Read more about this topic:  Isosceles Trapezoid

Famous quotes containing the word height:

    We have not the motive to prepare ourselves for a “life-work” of teaching, of social work—we know that we would lay it down with hallelujah in the height of our success, to make a home for the right man. And all the time in the background of our consciousness rings the warning that perhaps the right man will never come. A great love is given to very few. Perhaps this make-shift time filler of a job is our life work after all.
    Ruth Benedict (1887–1948)