Isoperimetric Inequality - The Isoperimetric Problem in The Plane

The Isoperimetric Problem in The Plane

The classical isoperimetric problem dates back to antiquity. The problem can be stated as follows: Among all closed curves in the plane of fixed perimeter, which curve (if any) maximizes the area of its enclosed region? This question can be shown to be equivalent to the following problem: Among all closed curves in the plane enclosing a fixed area, which curve (if any) minimizes the perimeter?

This problem is conceptually related to the principle of least action in physics, in that it can be restated: what is the principle of action which encloses the greatest area, with the greatest economy of effort? The 15th-century philosopher and scientist, Cardinal Nicholas of Cusa, considered rotational action, the process by which a circle is generated, to be the most direct reflection, in the realm of sensory impressions, of the process by which the universe is created. German astronomer and astrologer Johannes Kepler invoked the isoperimetric principle in discussing the morphology of the solar system, in Mysterium Cosmographicum (The Sacred Mystery of the Cosmos, 1596).

Although the circle appears to be an obvious solution to the problem, proving this fact is rather difficult. The first progress toward the solution was made by Swiss geometer Jakob Steiner in 1838, using a geometric method later named Steiner symmetrisation. Steiner showed that if a solution existed, then it must be the circle. Steiner's proof was completed later by several other mathematicians.

Steiner begins with some geometric constructions which are easily understood; for example, it can be shown that any closed curve enclosing a region that is not fully convex can be modified to enclose more area, by "flipping" the concave areas so that they become convex. It can further be shown that any closed curve which is not fully symmetrical can be "tilted" so that it encloses more area. The one shape that is perfectly convex and symmetrical is the circle, although this, in itself, does not represent a rigorous proof of the isoperimetric theorem (see external links).

Read more about this topic:  Isoperimetric Inequality

Famous quotes containing the words problem and/or plane:

    It is part of the educator’s responsibility to see equally to two things: First, that the problem grows out of the conditions of the experience being had in the present, and that it is within the range of the capacity of students; and, secondly, that it is such that it arouses in the learner an active quest for information and for production of new ideas. The new facts and new ideas thus obtained become the ground for further experiences in which new problems are presented.
    John Dewey (1859–1952)

    Even though I had let them choose their own socks since babyhood, I was only beginning to learn to trust their adult judgment.. . . I had a sensation very much like the moment in an airplane when you realize that even if you stop holding the plane up by gripping the arms of your seat until your knuckles show white, the plane will stay up by itself. . . . To detach myself from my children . . . I had to achieve a condition which might be called loving objectivity.
    —Anonymous Parent of Adult Children. Ourselves and Our Children, by Boston Women’s Health Book Collective, ch. 5 (1978)