Isoperimetric Inequality - The Isoperimetric Inequality On The Sphere

The Isoperimetric Inequality On The Sphere

Let C be a simple closed curve on a sphere of radius 1. Denote by L the length of C and by A the area enclosed by C. The spherical isoperimetric inequality states that

and that the equality holds if and only if the curve is a circle. There are, in fact, two ways to measure the spherical area enclosed by a simple closed curve, but the inequality is symmetric with the respect to taking the complement.

This inequality was discovered by Paul Lévy (1919) who also extended it to higher dimensions and general surfaces.

Read more about this topic:  Isoperimetric Inequality

Famous quotes containing the words inequality and/or sphere:

    However energetically society in general may strive to make all the citizens equal and alike, the personal pride of each individual will always make him try to escape from the common level, and he will form some inequality somewhere to his own profit.
    Alexis de Tocqueville (1805–1859)

    For my part, I have no hesitation in saying that although the American woman never leaves her domestic sphere and is in some respects very dependent within it, nowhere does she enjoy a higher station . . . if anyone asks me what I think the chief cause of the extraordinary prosperity and growing power of this nation, I should answer that it is due to the superiority of their woman.
    Alexis de Tocqueville (1805–1859)