Isoperimetric Inequality - Isoperimetric Inequality in Higher Dimensions

Isoperimetric Inequality in Higher Dimensions

The isoperimetric theorem generalizes to surfaces in the three-dimensional Euclidean space. Among all simple closed surfaces with given surface area, the sphere encloses a region of maximal volume. An analogous statement holds in Euclidean spaces of any dimension.

In full generality (Federer 1969, §3.2.43), the isoperimetric inequality states that for any set SRn whose closure has finite Lebesgue measure

where M*n-1 is the (n-1)-dimensional Minkowski content, Ln is the n-dimensional Lebesgue measure, and ωn is the volume of the unit ball in Rn. If the boundary of S is rectifiable, then the Minkowski content is the (n-1)-dimensional Hausdorff measure.

The isoperimetric inequality in n-dimensions can be quickly proven by the Brunn-Minkowski inequality (Osserman (1978); Federer (1969, §3.2.43)).

The n-dimensional isoperimetric inequality is equivalent (for sufficiently smooth domains) to the Sobolev inequality on Rn with optimal constant:

for all uW1,1(Rn).

Read more about this topic:  Isoperimetric Inequality

Famous quotes containing the words inequality, higher and/or dimensions:

    Love is a great thing. It is not by chance that in all times and practically among all cultured peoples love in the general sense and the love of a man for his wife are both called love. If love is often cruel or destructive, the reasons lie not in love itself, but in the inequality between people.
    Anton Pavlovich Chekhov (1860–1904)

    Many, no doubt, are well disposed, but sluggish by constitution and habit, and they cannot conceive of a man who is actuated by higher motives than they are. Accordingly they pronounce this man insane, for they know that they could never act as he does, as long as they are themselves.
    Henry David Thoreau (1817–1862)

    I was surprised by Joe’s asking me how far it was to the Moosehorn. He was pretty well acquainted with this stream, but he had noticed that I was curious about distances, and had several maps. He and Indians generally, with whom I have talked, are not able to describe dimensions or distances in our measures with any accuracy. He could tell, perhaps, at what time we should arrive, but not how far it was.
    Henry David Thoreau (1817–1862)