Isoperimetric Inequality in Higher Dimensions
The isoperimetric theorem generalizes to surfaces in the three-dimensional Euclidean space. Among all simple closed surfaces with given surface area, the sphere encloses a region of maximal volume. An analogous statement holds in Euclidean spaces of any dimension.
In full generality (Federer 1969, §3.2.43), the isoperimetric inequality states that for any set S ⊂ Rn whose closure has finite Lebesgue measure
where M*n-1 is the (n-1)-dimensional Minkowski content, Ln is the n-dimensional Lebesgue measure, and ωn is the volume of the unit ball in Rn. If the boundary of S is rectifiable, then the Minkowski content is the (n-1)-dimensional Hausdorff measure.
The isoperimetric inequality in n-dimensions can be quickly proven by the Brunn-Minkowski inequality (Osserman (1978); Federer (1969, §3.2.43)).
The n-dimensional isoperimetric inequality is equivalent (for sufficiently smooth domains) to the Sobolev inequality on Rn with optimal constant:
for all u ∈ W1,1(Rn).
Read more about this topic: Isoperimetric Inequality
Famous quotes containing the words inequality, higher and/or dimensions:
“However energetically society in general may strive to make all the citizens equal and alike, the personal pride of each individual will always make him try to escape from the common level, and he will form some inequality somewhere to his own profit.”
—Alexis de Tocqueville (18051859)
“Three factorsthe belief that child care is female work, the failure of ex-husbands to support their children, and higher male wages at workhave taken the economic rug from under that half of married women who divorce.”
—Arlie Hochschild (20th century)
“Why is it that many contemporary male thinkers, especially men of color, repudiate the imperialist legacy of Columbus but affirm dimensions of that legacy by their refusal to repudiate patriarchy?”
—bell hooks (b. c. 1955)