Isoperimetric Inequality - Isoperimetric Inequality in Higher Dimensions

Isoperimetric Inequality in Higher Dimensions

The isoperimetric theorem generalizes to surfaces in the three-dimensional Euclidean space. Among all simple closed surfaces with given surface area, the sphere encloses a region of maximal volume. An analogous statement holds in Euclidean spaces of any dimension.

In full generality (Federer 1969, §3.2.43), the isoperimetric inequality states that for any set SRn whose closure has finite Lebesgue measure

where M*n-1 is the (n-1)-dimensional Minkowski content, Ln is the n-dimensional Lebesgue measure, and ωn is the volume of the unit ball in Rn. If the boundary of S is rectifiable, then the Minkowski content is the (n-1)-dimensional Hausdorff measure.

The isoperimetric inequality in n-dimensions can be quickly proven by the Brunn-Minkowski inequality (Osserman (1978); Federer (1969, §3.2.43)).

The n-dimensional isoperimetric inequality is equivalent (for sufficiently smooth domains) to the Sobolev inequality on Rn with optimal constant:

for all uW1,1(Rn).

Read more about this topic:  Isoperimetric Inequality

Famous quotes containing the words inequality, higher and/or dimensions:

    Love is a great thing. It is not by chance that in all times and practically among all cultured peoples love in the general sense and the love of a man for his wife are both called love. If love is often cruel or destructive, the reasons lie not in love itself, but in the inequality between people.
    Anton Pavlovich Chekhov (1860–1904)

    The higher we rise up, the smaller we appear to those who are unable to fly.
    Friedrich Nietzsche (1844–1900)

    It seems to me that we do not know nearly enough about ourselves; that we do not often enough wonder if our lives, or some events and times in our lives, may not be analogues or metaphors or echoes of evolvements and happenings going on in other people?—or animals?—even forests or oceans or rocks?—in this world of ours or, even, in worlds or dimensions elsewhere.
    Doris Lessing (b. 1919)