Isometric Projection - Mathematics

Mathematics

There are eight different orientations to obtain an isometric view, depending into which octant the viewer looks. The isometric transform from a point in 3D space to a point in 2D space looking into the first octant can be written mathematically with rotation matrices as:


\begin{bmatrix} \mathbf{c}_x \\ \mathbf{c}_y \\ \mathbf{c}_z \\
\end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & {\cos\alpha} & {\sin\alpha} \\ 0 & { - \sin\alpha} & {\cos\alpha} \\
\end{bmatrix}\begin{bmatrix} {\cos\beta } & 0 & { - \sin\beta } \\ 0 & 1 & 0 \\ {\sin\beta } & 0 & {\cos\beta } \\
\end{bmatrix}\begin{bmatrix} \mathbf{a}_x \\ \mathbf{a}_y \\ \mathbf{a}_z \\
\end{bmatrix}=\frac{1}{\sqrt{6}}\begin{bmatrix} \sqrt{3} & 0 & -\sqrt{3} \\ 1 & 2 & 1 \\ \sqrt{2} & -\sqrt{2} & \sqrt{2} \\
\end{bmatrix}\begin{bmatrix} \mathbf{a}_x \\ \mathbf{a}_y \\ \mathbf{a}_z \\
\end{bmatrix}

where and . As explained above, this is a rotation around the vertical (here y) axis by, followed by a rotation around the horizontal (here x) axis by . This is then followed by an orthographic projection to the x-y plane:


\begin{bmatrix} \mathbf{b}_x \\ \mathbf{b}_y \\ 0 \\
\end{bmatrix}=
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\
\end{bmatrix}\begin{bmatrix} \mathbf{c}_x \\ \mathbf{c}_y \\ \mathbf{c}_z \\
\end{bmatrix}

The other 7 possibilities are obtained by either rotating to the opposite sides or not, and then inverting the view direction or not.

Read more about this topic:  Isometric Projection

Famous quotes containing the word mathematics:

    The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.
    Willard Van Orman Quine (b. 1908)

    I must study politics and war that my sons may have liberty to study mathematics and philosophy.
    John Adams (1735–1826)

    Mathematics alone make us feel the limits of our intelligence. For we can always suppose in the case of an experiment that it is inexplicable because we don’t happen to have all the data. In mathematics we have all the data ... and yet we don’t understand. We always come back to the contemplation of our human wretchedness. What force is in relation to our will, the impenetrable opacity of mathematics is in relation to our intelligence.
    Simone Weil (1909–1943)