Isometric Projection - Mathematics

Mathematics

There are eight different orientations to obtain an isometric view, depending into which octant the viewer looks. The isometric transform from a point in 3D space to a point in 2D space looking into the first octant can be written mathematically with rotation matrices as:


\begin{bmatrix} \mathbf{c}_x \\ \mathbf{c}_y \\ \mathbf{c}_z \\
\end{bmatrix}=\begin{bmatrix} 1 & 0 & 0 \\ 0 & {\cos\alpha} & {\sin\alpha} \\ 0 & { - \sin\alpha} & {\cos\alpha} \\
\end{bmatrix}\begin{bmatrix} {\cos\beta } & 0 & { - \sin\beta } \\ 0 & 1 & 0 \\ {\sin\beta } & 0 & {\cos\beta } \\
\end{bmatrix}\begin{bmatrix} \mathbf{a}_x \\ \mathbf{a}_y \\ \mathbf{a}_z \\
\end{bmatrix}=\frac{1}{\sqrt{6}}\begin{bmatrix} \sqrt{3} & 0 & -\sqrt{3} \\ 1 & 2 & 1 \\ \sqrt{2} & -\sqrt{2} & \sqrt{2} \\
\end{bmatrix}\begin{bmatrix} \mathbf{a}_x \\ \mathbf{a}_y \\ \mathbf{a}_z \\
\end{bmatrix}

where and . As explained above, this is a rotation around the vertical (here y) axis by, followed by a rotation around the horizontal (here x) axis by . This is then followed by an orthographic projection to the x-y plane:


\begin{bmatrix} \mathbf{b}_x \\ \mathbf{b}_y \\ 0 \\
\end{bmatrix}=
\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\
\end{bmatrix}\begin{bmatrix} \mathbf{c}_x \\ \mathbf{c}_y \\ \mathbf{c}_z \\
\end{bmatrix}

The other 7 possibilities are obtained by either rotating to the opposite sides or not, and then inverting the view direction or not.

Read more about this topic:  Isometric Projection

Famous quotes containing the word mathematics:

    Why does man freeze to death trying to reach the North Pole? Why does man drive himself to suffer the steam and heat of the Amazon? Why does he stagger his mind with the mathematics of the sky? Once the question mark has arisen in the human brain the answer must be found, if it takes a hundred years. A thousand years.
    Walter Reisch (1903–1963)

    The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.
    Willard Van Orman Quine (b. 1908)