Definition
Given a graph Λ (for example, a d-dimensional lattice), per each lattice site j ∈ Λ there is a discrete variable σj such that σj ∈{+1, −1}. A spin configuration, σ = (σj)j∈Λ is an assignment of spin value to each lattice site.
For any two adjacent sites i, j ∈Λ one has an interaction Jij, and a site i ∈ Λ has an external magnetic field hi. The energy of a configuration σ is given by the Hamiltonian Function
where the first sum is over pairs of adjacent spins (every pair is counted once).
where β = (kBT)-1
and the normalization constant
is the partition function. For a function f of the spins ("observable"), one denotes by
the expectation (mean value) of f.
The configuration probabilities represent the probability of being in a state with configuration σ in equilibrium.
Read more about this topic: Ising Model
Famous quotes containing the word definition:
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The physicians say, they are not materialists; but they are:MSpirit is matter reduced to an extreme thinness: O so thin!But the definition of spiritual should be, that which is its own evidence. What notions do they attach to love! what to religion! One would not willingly pronounce these words in their hearing, and give them the occasion to profane them.”
—Ralph Waldo Emerson (18031882)
“Although there is no universal agreement as to a definition of life, its biological manifestations are generally considered to be organization, metabolism, growth, irritability, adaptation, and reproduction.”
—The Columbia Encyclopedia, Fifth Edition, the first sentence of the article on life (based on wording in the First Edition, 1935)