History
The German physicist Rudolf Clausius, in the 1850s, was the first to mathematically quantify the discovery of irreversibility in nature through his introduction of the concept of entropy. In his 1854 memoir "On a Modified Form of the Second Fundamental Theorem in the Mechanical Theory of Heat" Clausius states:
“ | It may, moreover, happen that instead of a descending transmission of heat accompanying, in the one and the same process, the ascending transmission, another permanent change may occur which has the peculiarity of not being reversible without either becoming replaced by a new permanent change of a similar kind, or producing a descending transmission of heat. | ” |
Simply, Clausius states that it is impossible for a system to transfer heat from a cooler body to a hotter body. For example, a cup of hot coffee placed in an area of room temperature (~72 °F) will transfer heat to its surroundings and thereby cool down with the temperature of the room slightly increasing (~72.3 °F). However, that same initial cup of coffee will never absorb heat from its surroundings causing it to grow even hotter with the temperature of the room decreasing (~71.7 °F). Therefore, the process of the coffee cooling down is irreversible unless extra energy is added to the system.
However, a paradox arose when attempting to reconcile microanalysis of a system with observations of its macrostate. Many processes are mathematically reversible in their microstate when analyzed using classical Newtonian mechanics. From 1872 to 1875, Ludwig Boltzmann reinforced the statistical explanation of this paradox in the form of Boltzmann's entropy formula stating that as the number of possible microstates a system might be in increases, the entropy of the system increases and it becomes less likely that the system will return to an earlier state. His formulas quantified the work done by William Thomson, 1st Baron Kelvin who had argued that:
“ | The equations of motion in abstract dynamics are perfectly reversible; any solution of these equations remains valid when the time variable t is replaced by –t. Physical processes, on the other hand, are irreversible: for example, the friction of solids, conduction of heat, and diffusion. Nevertheless, the principle of dissipation of energy is compatible with a molecular theory in which each particle is subject to the laws of abstract dynamics. | ” |
Another explanation of irreversible systems was presented by French mathematician Henri Poincaré. In 1890, he published his first explanation of nonlinear dynamics, also called chaos theory. Applying the chaos theory to the second law of thermodynamics, the paradox of irreversibility can be explained in the errors associated with scaling from microstates to macrostates and the degrees of freedom used when making experimental observations. Sensitivity to initial conditions relating to the system and its environment at the microstate compounds into an exhibition of irreversible characteristics within the observable, physical realm.
Read more about this topic: Irreversible Process
Famous quotes containing the word history:
“Yet poetry, though the last and finest result, is a natural fruit. As naturally as the oak bears an acorn, and the vine a gourd, man bears a poem, either spoken or done. It is the chief and most memorable success, for history is but a prose narrative of poetic deeds.”
—Henry David Thoreau (18171862)
“The awareness that health is dependent upon habits that we control makes us the first generation in history that to a large extent determines its own destiny.”
—Jimmy Carter (James Earl Carter, Jr.)
“You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.”
—Hermann Hesse (18771962)