Enzyme Structure
The three deiodinase enzymes share certain structural features in common although their sequence identity is lower than 50%. Each enzyme weighs between 29 and 33kDa. Deiodinases are dimeric integral membrane proteins with single transmembrane segments and large globular heads. They share a TRX fold that contains the active site including the rare selenocysteine amino acid and two histidine residues. Selenocysteine is coded by a UGA codon, which generally signifies termination of a peptide through a stop codon. In point mutation experiments with Deiodinase 1 changing UGA to the stop codon TAA resulted in a complete loss of function, while changing UGA to cysteine (TGT) caused the enzyme to operate at around 10% normal efficiency. In order for UGA to be read as a selenocysteine amino acid instead of a stop codon, it is necessary that a downstream stem loop sequence, the selenocysteine insertion sequence (SECIS), be present to bind with SECIS binding protein-2 (SBP-2), which binds with elongation factor EFsec. The translation of selenocysteine is not efficient, even though it is important to the functioning of the enzyme. Deiodinase 2 is localized to the ER membrane while Deinodase 1 and 3 are found in the plasma membrane.
Read more about this topic: Iodothyronine Deiodinase
Famous quotes containing the word structure:
“The verbal poetical texture of Shakespeare is the greatest the world has known, and is immensely superior to the structure of his plays as plays. With Shakespeare it is the metaphor that is the thing, not the play.”
—Vladimir Nabokov (18991977)