Inverse Trigonometric Functions - Logarithmic Forms

Logarithmic Forms

These functions may also be expressed using complex logarithms. This extends in a natural fashion their domain to the complex plane.


\begin{align}
\arcsin x &{}= -i\,\ln\left(i\,x+\sqrt{1-x^2}\right) &{}= \arccsc \frac{1}{x}\\
\arccos x &{}= -i\,\ln\left(x+i\,\sqrt{1-x^2}\right) = \frac{\pi}{2}\,+i\ln\left(i\,x+\sqrt{1-x^2}\right) = \frac{\pi}{2}-\arcsin x &{}= \arcsec \frac{1}{x}\\
\arctan x &{}= \tfrac{1}{2}i\left(\ln\left(1-i\,x\right)-\ln\left(1+i\,x\right)\right) &{}= \arccot \frac{1}{x}\\
\arccot x &{}= \tfrac{1}{2}i\left(\ln\left(1-\frac{i}{x}\right)-\ln\left(1+\frac{i}{x}\right)\right) &{}= \arctan \frac{1}{x}\\
\arcsec x &{}= -i\,\ln\left(i\,\sqrt{1-\frac{1}{x^2}}+\frac{1}{x}\right) = i\,\ln\left(\sqrt{1-\frac{1}{x^2}}+\frac{i}{x}\right)+\frac{\pi}{2} = \frac{\pi}{2}-\arccsc x &{}= \arccos \frac{1}{x}\\
\arccsc x &{}= -i\,\ln\left(\sqrt{1-\frac{1}{x^2}}+\frac{i}{x}\right) &{}= \arcsin \frac{1}{x}
\end{align}

Elementary proofs of these relations proceed via expansion to exponential forms of the trigonometric functions.

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the word forms:

    The catalogue of forms is endless: until every shape has found its city, new cities will continue to be born. When the forms exhaust their variety and come apart, the end of cities begins.
    Italo Calvino (1923–1985)