Inverse Trigonometric Functions - Infinite Series

Infinite Series

Like the sine and cosine functions, the inverse trigonometric functions can be calculated using infinite series, as follows:


\begin{align}
\arcsin z & {}= z + \left( \frac {1} {2} \right) \frac {z^3} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots\\
& {}= \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{2n+1}} {(2n+1)}
; \qquad | z | \le 1
\end{align}



\begin{align}
\arccos z & {}= \frac {\pi} {2} - \arcsin z \\
& {}= \frac {\pi} {2} - (z + \left( \frac {1} {2} \right) \frac {z^3} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^5} {5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^7} {7} + \cdots ) \\
& {}= \frac {\pi} {2} - \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{2n+1}} {(2n+1)}
; \qquad | z | \le 1
\end{align}



\begin{align}
\arctan z & {}= z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots \\
& {}= \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}
; \qquad | z | \le 1 \qquad z \neq i,-i
\end{align}



\begin{align}
\arccot z & {}= \frac {\pi} {2} - \arctan z \\
& {}= \frac {\pi} {2} - ( z - \frac {z^3} {3} +\frac {z^5} {5} -\frac {z^7} {7} +\cdots ) \\
& {}= \frac {\pi} {2} - \sum_{n=0}^\infty \frac {(-1)^n z^{2n+1}} {2n+1}
; \qquad | z | \le 1 \qquad z \neq i,-i
\end{align}



\begin{align}
\arcsec z & {}= \arccos {(1/z)} \\
& {}= \frac {\pi} {2} - (z^{-1} + \left( \frac {1} {2} \right) \frac {z^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {z^{-5}} {5} + \left( \frac{1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6 } \right) \frac{z^{-7}} {7} + \cdots ) \\
& {}= \frac {\pi} {2} - \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{-(2n+1)}} {(2n+1)}
; \qquad \left| z \right| \ge 1
\end{align}



\begin{align}
\arccsc z & {}= \arcsin {(1/z)} \\
& {}= z^{-1} + \left( \frac {1} {2} \right) \frac {z^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4 } \right) \frac {z^{-5}} {5} + \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {z^{-7}} {7} +\cdots \\
& {}= \sum_{n=0}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {z^{-(2n+1)}} {2n+1}
; \qquad \left| z \right| \ge 1
\end{align}


Leonhard Euler found a more efficient series for the arctangent, which is:

(Notice that the term in the sum for n= 0 is the empty product which is 1.)


Alternatively, this can be expressed:

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words infinite and/or series:

    [The human mind] finds more facility in assenting to the self-existence of an invisible cause possessing infinite power, wisdom, and goodness, than in the self-existence of the universe, visibly destitute of these attributes, and which may be the effect of them.
    James Madison (1751–1836)

    I thought I never wanted to be a father. A child seemed to be a series of limitations and responsibilities that offered no reward. But when I experienced the perfection of fatherhood, the rest of the world remade itself before my eyes.
    Kent Nerburn (20th century)