Inverse Trigonometric Functions - Indefinite Integrals of Inverse Trigonometric Functions

Indefinite Integrals of Inverse Trigonometric Functions

For real and complex values of x:


\begin{align}
\int \arcsin x\,dx &{}= x\,\arcsin x + \sqrt{1-x^2} + C\\
\int \arccos x\,dx &{}= x\,\arccos x - \sqrt{1-x^2} + C\\
\int \arctan x\,dx &{}= x\,\arctan x - \frac{1}{2}\ln\left(1+x^2\right) + C\\
\int \arccot x\,dx &{}= x\,\arccot x + \frac{1}{2}\ln\left(1+x^2\right) + C\\
\int \arcsec x\,dx &{}= x\,\arcsec x - \ln\left + C\\
\int \arccsc x\,dx &{}= x\,\arccsc x + \ln\left + C
\end{align}

For real x ≥ 1:


\begin{align}
\int \arcsec x\,dx &{}= x\,\arcsec x - \ln\left(x+\sqrt{x^2-1}\right) + C\\
\int \arccsc x\,dx &{}= x\,\arccsc x + \ln\left(x+\sqrt{x^2-1}\right) + C
\end{align}

All of these can be derived using integration by parts and the simple derivative forms shown above.

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words indefinite, inverse and/or functions:

    As they are not seen on their way down the streams, it is thought by fishermen that they never return, but waste away and die, clinging to rocks and stumps of trees for an indefinite period; a tragic feature in the scenery of the river bottoms worthy to be remembered with Shakespeare’s description of the sea-floor.
    Henry David Thoreau (1817–1862)

    Yet time and space are but inverse measures of the force of the soul. The spirit sports with time.
    Ralph Waldo Emerson (1803–1882)

    When Western people train the mind, the focus is generally on the left hemisphere of the cortex, which is the portion of the brain that is concerned with words and numbers. We enhance the logical, bounded, linear functions of the mind. In the East, exercises of this sort are for the purpose of getting in tune with the unconscious—to get rid of boundaries, not to create them.
    Edward T. Hall (b. 1914)