Inverse Trigonometric Functions - Indefinite Integrals of Inverse Trigonometric Functions

Indefinite Integrals of Inverse Trigonometric Functions

For real and complex values of x:


\begin{align}
\int \arcsin x\,dx &{}= x\,\arcsin x + \sqrt{1-x^2} + C\\
\int \arccos x\,dx &{}= x\,\arccos x - \sqrt{1-x^2} + C\\
\int \arctan x\,dx &{}= x\,\arctan x - \frac{1}{2}\ln\left(1+x^2\right) + C\\
\int \arccot x\,dx &{}= x\,\arccot x + \frac{1}{2}\ln\left(1+x^2\right) + C\\
\int \arcsec x\,dx &{}= x\,\arcsec x - \ln\left + C\\
\int \arccsc x\,dx &{}= x\,\arccsc x + \ln\left + C
\end{align}

For real x ≥ 1:


\begin{align}
\int \arcsec x\,dx &{}= x\,\arcsec x - \ln\left(x+\sqrt{x^2-1}\right) + C\\
\int \arccsc x\,dx &{}= x\,\arccsc x + \ln\left(x+\sqrt{x^2-1}\right) + C
\end{align}

All of these can be derived using integration by parts and the simple derivative forms shown above.

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words indefinite, inverse and/or functions:

    ... indefinite visions of ambition are weak against the ease of doing what is habitual or beguilingly agreeable.
    George Eliot [Mary Ann (or Marian)

    The quality of moral behaviour varies in inverse ratio to the number of human beings involved.
    Aldous Huxley (1894–1963)

    Empirical science is apt to cloud the sight, and, by the very knowledge of functions and processes, to bereave the student of the manly contemplation of the whole.
    Ralph Waldo Emerson (1803–1882)