General Solutions
Each of the trigonometric functions is periodic in the real part of its argument, running through all its values twice in each interval of 2π. Sine and cosecant begin their period at 2πk − π/2 (where k is an integer), finish it at 2πk + π/2, and then reverse themselves over 2πk + π/2 to 2πk + 3π/2. Cosine and secant begin their period at 2πk, finish it at 2πk + π, and then reverse themselves over 2πk + π to 2πk + 2π. Tangent begins its period at 2πk − π/2, finishes it at 2πk + π/2, and then repeats it (forward) over 2πk + π/2 to 2πk + 3π/2. Cotangent begins its period at 2πk, finishes it at 2πk + π, and then repeats it (forward) over 2πk + π to 2πk + 2π.
This periodicity is reflected in the general inverses where k is some integer:
- Which, written in one equation, is:
- Which, written in one equation, is:
Read more about this topic: Inverse Trigonometric Functions
Famous quotes containing the words general and/or solutions:
“Why not draft executive and management brains to prepare and produce the equipment the $21-a-month draftee must use and forget this dollar-a-year tommyrot? Would we send an army into the field under a dollar-a-year General who had to be home Mondays, Wednesdays and Fridays?”
—Lyndon Baines Johnson (19081973)
“Football strategy does not originate in a scrimmage: it is useless to expect solutions in a political compaign.”
—Walter Lippmann (18891974)