Inverse Trigonometric Functions - Expression As Definite Integrals

Expression As Definite Integrals

Integrating the derivative and fixing the value at one point gives an expression for the inverse trigonometric function as a definite integral:


\begin{align}
\arcsin x &{}= \int_0^x \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arccos x &{}= \int_x^1 \frac {1} {\sqrt{1 - z^2}}\,dz,\qquad |x| \leq 1\\
\arctan x &{}= \int_0^x \frac 1 {z^2 + 1}\,dz,\\
\arccot x &{}= \int_x^\infty \frac {1} {z^2 + 1}\,dz,\\
\arcsec x &{}= \int_1^x \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arcsec x &{}= \pi + \int_x^{-1} \frac 1 {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1\\
\arccsc x &{}= \int_x^\infty \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \geq 1\\
\arccsc x &{}= \int_{-\infty}^x \frac {1} {z \sqrt{z^2 - 1}}\,dz, \qquad x \leq -1
\end{align}

When x equals 1, the integrals with limited domains are improper integrals, but still well-defined.

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words expression and/or definite:

    Every production of an artist should be the expression of an adventure of his soul.
    W. Somerset Maugham (1874–1965)

    White ... is not a mere absence of colour; it is a shining and affirmative thing, as fierce as red, as definite as black.... God paints in many colours; but He never paints so gorgeously, I had almost said so gaudily, as when He paints in white.
    Gilbert Keith Chesterton (1874–1936)