Inverse Trigonometric Functions - Derivatives of Inverse Trigonometric Functions

Derivatives of Inverse Trigonometric Functions

Simple derivatives for real and complex values of x are as follows:


\begin{align}
\frac{d}{dx} \arcsin x & {}= \frac{1}{\sqrt{1-x^2}}\\
\frac{d}{dx} \arccos x & {}= \frac{-1}{\sqrt{1-x^2}}\\
\frac{d}{dx} \arctan x & {}= \frac{1}{1+x^2}\\
\frac{d}{dx} \arccot x & {}= \frac{-1}{1+x^2}\\
\frac{d}{dx} \arcsec x & {}= \frac{1}{x\,\sqrt{x^2-1}}\\
\frac{d}{dx} \arccsc x & {}= \frac{-1}{x\,\sqrt{x^2-1}}
\end{align}

Only for real values of x:


\begin{align}
\frac{d}{dx} \arcsec x & {}= \frac{1}{|x|\,\sqrt{x^2-1}}; \qquad |x| > 1\\
\frac{d}{dx} \arccsc x & {}= \frac{-1}{|x|\,\sqrt{x^2-1}}; \qquad |x| > 1
\end{align}

For a sample derivation: if, we get:

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the words inverse and/or functions:

    The quality of moral behaviour varies in inverse ratio to the number of human beings involved.
    Aldous Huxley (1894–1963)

    Mark the babe
    Not long accustomed to this breathing world;
    One that hath barely learned to shape a smile,
    Though yet irrational of soul, to grasp
    With tiny finger—to let fall a tear;
    And, as the heavy cloud of sleep dissolves,
    To stretch his limbs, bemocking, as might seem,
    The outward functions of intelligent man.
    William Wordsworth (1770–1850)