Inverse Trigonometric Functions - Continued Fractions For Arctangent

Continued Fractions For Arctangent

Two alternatives to the power series for arctangent are these generalized continued fractions:


\arctan z=\cfrac{z} {1+\cfrac{(1z)^2} {3-1z^2+\cfrac{(3z)^2} {5-3z^2+\cfrac{(5z)^2} {7-5z^2+\cfrac{(7z)^2} {9-7z^2+\ddots}}}}}
=\cfrac{z} {1+\cfrac{(1z)^2} {3+\cfrac{(2z)^2} {5+\cfrac{(3z)^2} {7+\cfrac{(4z)^2} {9+\ddots\,}}}}}\,

The second of these is valid in the cut complex plane. There are two cuts, from −i to the point at infinity, going down the imaginary axis, and from i to the point at infinity, going up the same axis. It works best for real numbers running from −1 to 1. The partial denominators are the odd natural numbers, and the partial numerators (after the first) are just (nz)2, with each perfect square appearing once. The first was developed by Leonhard Euler; the second by Carl Friedrich Gauss utilizing the Gaussian hypergeometric series.

Read more about this topic:  Inverse Trigonometric Functions

Famous quotes containing the word continued:

    The cause of Sense, is the External Body, or Object, which presseth the organ proper to each Sense, either immediately, as in the Taste and Touch; or mediately, as in Seeing, Hearing, and Smelling: which pressure, by the mediation of Nerves, and other strings, and membranes of the body, continued inwards to the Brain, and Heart, causeth there a resistance, or counter- pressure, or endeavor of the heart, to deliver it self: which endeavor because Outward, seemeth to be some matter without.
    Thomas Hobbes (1579–1688)