History
The field of inverse problems was first discovered and introduced by Soviet-Armenian physicist, Viktor Ambartsumian.
While still a student, Ambartsumian thoroughly studied the theory of atomic structure, the formation of energy levels, and the Schrödinger equation and its properties, and when he mastered the theory of eigenvalues of differential equations, he pointed out the apparent analogy between discrete energy levels and the eigenvalues of differential equations. He then asked: given a family of eigenvalues, is it possible to find the form of the equations whose eigenvalues they are? Essentially Ambartsumian was examining the inverse Sturm–Liouville problem, which dealt with determining the equations of a vibrating string. This paper was published in 1929 in the German physics journal Zeitschrift für Physik and remained in oblivion for a rather long time. Describing this situation after many decades, Ambartsumian said, "If an astronomer publishes an article with a mathematical content in a physics journal, then the most likely thing that will happen to it is oblivion."
Nonetheless, toward the end of the Second World War, this article, written by the 20-year-old Ambartsumian, was found by Swedish mathematicians and formed the starting point for a whole area of research on inverse problems, becoming the foundation of an entire discipline.
Read more about this topic: Inverse Problem
Famous quotes containing the word history:
“As I am, so shall I associate, and so shall I act; Caesars history will paint out Caesar.”
—Ralph Waldo Emerson (18031882)
“One classic American landscape haunts all of American literature. It is a picture of Eden, perceived at the instant of history when corruption has just begun to set in. The serpent has shown his scaly head in the undergrowth. The apple gleams on the tree. The old drama of the Fall is ready to start all over again.”
—Jonathan Raban (b. 1942)
“You treat world history as a mathematician does mathematics, in which nothing but laws and formulas exist, no reality, no good and evil, no time, no yesterday, no tomorrow, nothing but an eternal, shallow, mathematical present.”
—Hermann Hesse (18771962)