Inverse Galois Problem - Rigid Groups

Rigid Groups

Suppose that C1,...,Cn are conjugacy classes of a finite group G, and A be the set of n-tuples (g1,...gn) of G such that gi is in Ci and the product g1...gn is trivial. Then A is called rigid if it is nonempty, G acts transitively on it by conjugation, and each element of A generates G.

Thompson (1984) showed that if a finite group G has a rigid set then it can often be realized as a Galois group over a cyclotomic extension of the rationals. (More precisely, over the cyclotomic extension of the rationals generated by the values of the irreducible characters of G on the conjugacy classes Ci.)

This can be used to show that many finite simple groups, including the monster group, are Galois groups of extensions of the rationals. The monster group is generated by a triad of elements of orders 2, 3, and 29. All such triads are conjugate.

The prototype for rigidity is the symmetric group Sn, which is generated by an n-cycle and a transposition whose product is an (n-1)-cycle. The construction in the preceding section used these generators to establish a polynomial's Galois group.

Read more about this topic:  Inverse Galois Problem

Famous quotes containing the words rigid and/or groups:

    Let’s call something a rigid designator if in every possible world it designates the same object, a non-rigid or accidental designator if that is not the case. Of course we don’t require that the objects exist in all possible worlds.... When we think of a property as essential to an object we usually mean that it is true of that object in any case where it would have existed. A rigid designator of a necessary existent can be called strongly rigid.
    Saul Kripke (b. 1940)

    Belonging to a group can provide the child with a variety of resources that an individual friendship often cannot—a sense of collective participation, experience with organizational roles, and group support in the enterprise of growing up. Groups also pose for the child some of the most acute problems of social life—of inclusion and exclusion, conformity and independence.
    Zick Rubin (20th century)