Inverse Galois Problem - Partial Results

Partial Results

There is a great deal of detailed information in particular cases. It is known that every finite group is realizable over any function field in one variable over the complex numbers C, and more generally over function fields in one variable over any algebraically closed field of characteristic zero. Shafarevich showed that every finite solvable group is realizable over Q. It is also known that every sporadic group, except possibly the Mathieu group M23, is realizable over Q.

Hilbert had shown that this question is related to a rationality question for G: if K is any extension of Q, on which G acts as an automorphism group and the invariant field KG is rational over Q, then G is realizable over Q. Here rational means that it is a purely transcendental extension of Q, generated by an algebraically independent set. This criterion can for example be used to show that all the symmetric groups are realizable.

Much detailed work has been carried out on the question, which is in no sense solved in general. Some of this is based on constructing G geometrically as a Galois covering of the projective line: in algebraic terms, starting with an extension of the field Q(t) of rational functions in an indeterminate t. After that, one applies Hilbert's irreducibility theorem to specialise t, in such a way as to preserve the Galois group.

Read more about this topic:  Inverse Galois Problem

Famous quotes containing the words partial and/or results:

    There is no luck in literary reputation. They who make up the final verdict upon every book are not the partial and noisy readers of the hour when it appears; but a court as of angels, a public not to be bribed, not to be entreated, and not to be overawed, decides upon every man’s title to fame. Only those books come down which deserve to last.
    Ralph Waldo Emerson (1803–1882)

    We do not raise our children alone.... Our children are also raised by every peer, institution, and family with which they come in contact. Yet parents today expect to be blamed for whatever results occur with their children, and they expect to do their parenting alone.
    Richard Louv (20th century)