A Construction With An Elliptic Modular Function
Let n be any integer greater than 1. A lattice Λ in the complex plane with period ratio τ has a sublattice Λ' with period ratio nτ. The latter lattice is one of a finite set of sublattices permuted by the modular group PSL(2,Z), which is based on changes of basis for Λ. Let j denote the elliptic modular function of Klein. Define the polynomial φn as the product of the differences (X-j(Λi)) over the conjugate sublattices. As a polynomial in X, φn has coefficients that are polynomials over Q in j(τ).
On the conjugate lattices, the modular group acts as PGL(2,Zn). It follows that φn has Galois group isomorphic to PGL(2,Zn) over Q(J(τ)).
Use of Hilbert's irreducibility theorem gives an infinite (and dense) set of rational numbers specializing φn to polynomials with Galois group PGL(2,Zn) over Q. The groups PGL(2,Zn) include infinitely many non-solvable groups.
Read more about this topic: Inverse Galois Problem
Famous quotes containing the words construction and/or function:
“No real vital character in fiction is altogether a conscious construction of the author. On the contrary, it may be a sort of parasitic growth upon the authors personality, developing by internal necessity as much as by external addition.”
—T.S. (Thomas Stearns)
“The art of living is to function in society without doing violence to ones own needs or to the needs of others. The art of mothering is to teach the art of living to children.”
—Elaine Heffner (20th century)