Inverse-square Law - Field Theory Interpretation

Field Theory Interpretation

For an irrotational vector field in three-dimensional space the inverse-square law corresponds to the property that the divergence is zero outside the source. This can be generalized to higher dimensions. Generally, for an irrotational vector field in n-dimensional Euclidean space, the intensity "I" of the vector field falls off with the distance "r" following the inverse (n − 1)th power law

,

given that the space outside the source is divergence free.

Read more about this topic:  Inverse-square Law

Famous quotes containing the words field and/or theory:

    Every woman who visited the Fair made it the center of her orbit. Here was a structure designed by a woman, decorated by women, managed by women, filled with the work of women. Thousands discovered women were not only doing something, but had been working seriously for many generations ... [ellipsis in source] Many of the exhibits were admirable, but if others failed to satisfy experts, what of it?
    —Kate Field (1838–1908)

    Lucretius
    Sings his great theory of natural origins and of wise conduct; Plato
    smiling carves dreams, bright cells
    Of incorruptible wax to hive the Greek honey.
    Robinson Jeffers (1887–1962)