Invariant Subspace - Fundamental Theorem of Noncommutative Algebra

Fundamental Theorem of Noncommutative Algebra

Just as the fundamental theorem of algebra ensures that every linear transformation acting on a finite dimensional complex vector space has a nontrivial invariant subspace, the fundamental theorem of noncommutative algebra asserts that Lat(Σ) contains nontrivial elements for certain Σ.

Theorem (Burnside) Assume V is a complex vector space of finite dimension. For every proper subalgebra Σ of L(V), Lat(Σ) contain a nontrivial element.

Burnside's theorem is of fundamental importance in linear algebra. One consequence is that every commuting family in L(V) can be simultaneously upper-triangularized.

A nonempty Σ ⊂ L(V) is said to be triangularizable if there exists a basis {e1...en} of V such that

In other words, Σ is triangularizable if there exists a basis such that every element of Σ has an upper-triangular matrix representation in that basis. It follows from Burnside's theorem that every commutative algebra Σ in L(V) is triangularizable. Hence every commuting family in L(V) can be simultaneously upper-triangularized.

Read more about this topic:  Invariant Subspace

Famous quotes containing the words fundamental, theorem and/or algebra:

    Each [side in this war] looked for an easier triumph, and a result less fundamental and astounding. Both read the same Bible, and pray to the same God; and each invokes His aid against the other. It may seem strange that any men should dare to ask a just God’s assistance in wringing their bread from the sweat of other men’s faces; but let us judge not that we be not judged.
    Abraham Lincoln (1809–1865)

    To insure the adoration of a theorem for any length of time, faith is not enough, a police force is needed as well.
    Albert Camus (1913–1960)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)