Intuitionistic Type Theory

Intuitionistic type theory, or constructive type theory, or Martin-Löf type theory or just Type Theory is a logical system and a set theory based on the principles of mathematical constructivism. Intuitionistic type theory was introduced by Per Martin-Löf, a Swedish mathematician and philosopher, in 1972. Martin-Löf has modified his proposal a few times; his 1971 impredicative formulation was inconsistent as demonstrated by Girard's paradox. Later formulations were predicative. He proposed both intensional and extensional variants of the theory.

Intuitionistic type theory is based on a certain analogy or isomorphism between propositions and types: a proposition is identified with the type of its proofs. This identification is usually called the Curry–Howard isomorphism, which was originally formulated for intuitionistic logic and simply typed lambda calculus. Type Theory extends this identification to predicate logic by introducing dependent types, that is types which contain values. Type Theory internalizes the interpretation of intuitionistic logic proposed by Brouwer, Heyting and Kolmogorov, the so called BHK interpretation. The types of Type Theory play a similar role to sets in set theory but functions definable in Type Theory are always computable.

Read more about Intuitionistic Type Theory:  Connectives of Type Theory, Formalisation of Type Theory, Categorical Models of Type Theory, Extensional Versus Intensional, Implementations of Type Theory

Famous quotes containing the words type and/or theory:

    Time has an undertaking establishment on every block and drives his coffin nails faster than the steam riveters rivet or the stenographers type or the tickers tick out fours and eights and dollar signs and ciphers.
    John Dos Passos (1896–1970)

    Many people have an oversimplified picture of bonding that could be called the “epoxy” theory of relationships...if you don’t get properly “glued” to your babies at exactly the right time, which only occurs very soon after birth, then you will have missed your chance.
    Pamela Patrick Novotny (20th century)