Intrinsic Viscosity - Formulae For Rigid Spheroids

Formulae For Rigid Spheroids

Generalizing from spheres to spheroids with an axial semiaxis (i.e., the semiaxis of revolution) and equatorial semiaxes, the intrinsic viscosity can be written


\left =
\left( \frac{4}{15} \right) (J + K - L) +
\left( \frac{2}{3} \right) L +
\left( \frac{1}{3} \right) M +
\left( \frac{1}{15} \right) N

where the constants are defined


M \ \stackrel{\mathrm{def}}{=}\ \frac{1}{a b^{4}} \frac{1}{J_{\alpha}^{\prime}}

K \ \stackrel{\mathrm{def}}{=}\ \frac{M}{2}

J \ \stackrel{\mathrm{def}}{=}\ K \frac{J_{\alpha}^{\prime\prime}}{J_{\beta}^{\prime\prime}}

L \ \stackrel{\mathrm{def}}{=}\ \frac{2}{a b^{2} \left( a^{2} + b^{2} \right)}
\frac{1}{J_{\beta}^{\prime}}

N \ \stackrel{\mathrm{def}}{=}\ \frac{6}{a b^{2}}
\frac{\left( a^{2} - b^{2} \right)}{a^{2} J_{\alpha} + b^{2} J_{\beta}}

The coefficients are the Jeffery functions


J_{\alpha} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right) \sqrt{\left( x + a^{2} \right)^{3}}}

J_{\beta} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)}}

J_{\alpha}^{\prime} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{3} \sqrt{\left( x + a^{2} \right)}}

J_{\beta}^{\prime} =
\int_{0}^{\infty} \frac{dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)^{3}}}

J_{\alpha}^{\prime\prime} =
\int_{0}^{\infty} \frac{x\ dx}{\left( x + b^{2} \right)^{3} \sqrt{\left( x + a^{2} \right)}}

J_{\beta}^{\prime\prime} =
\int_{0}^{\infty} \frac{x\ dx}{\left( x + b^{2} \right)^{2} \sqrt{\left( x + a^{2} \right)^{3}}}

Read more about this topic:  Intrinsic Viscosity

Famous quotes containing the words formulae and/or rigid:

    I don’t believe in providence and fate, as a technologist I am used to reckoning with the formulae of probability.
    Max Frisch (1911–1991)

    The essence of statesmanship is not a rigid adherence to the past, but a prudent and probing concern for the future.
    Hubert H. Humphrey (1911–1978)