Interquartile Range of Distributions
The interquartile range of a continuous distribution can be calculated by integrating the probability density function (which yields the cumulative distribution function — any other means of calculating the CDF will also work). The lower quartile, Q1, is a number such that integral of the PDF from -∞ to Q1 equals 0.25, while the upper quartile, Q3, is such a number that the integral from -∞ to Q3 equals 0.75; in terms of the CDF, the quartiles can be defined as follows:
where CDF−1 is the quantile function.
The interquartile range and median of some common distributions are shown below
Distribution | Median | IQR |
---|---|---|
Normal | μ | 2 Φ−1(0.75) ≈ 1.349 |
Laplace | μ | 2b ln(2) |
Cauchy | μ |
Read more about this topic: Interquartile Range
Famous quotes containing the word range:
“The wider the range of possibilities we offer children, the more intense will be their motivations and the richer their experiences. We must widen the range of topics and goals, the types of situations we offer and their degree of structure, the kinds and combinations of resources and materials, and the possible interactions with things, peers, and adults.”
—Loris Malaguzzi (19201994)