Instrumentalist Interpretation
Any modern scientific theory requires at the very least an instrumentalist description that relates the mathematical formalism to experimental practice and prediction. In the case of quantum mechanics, the most common instrumentalist description is an assertion of statistical regularity between state preparation processes and measurement processes. That is, if a measurement of a real-value quantity is performed many times, each time starting with the same initial conditions, the outcome is a well-defined probability distribution agreeing with the real numbers; moreover, quantum mechanics provides a computational instrument to determine statistical properties of this distribution, such as its expectation value.
Calculations for measurements performed on a system S postulate a Hilbert space H over the complex numbers. When the system S is prepared in a pure state, it is associated with a vector in H. Measurable quantities are associated with Hermitian operators acting on H: these are referred to as observables.
Repeated measurement of an observable A where S is prepared in state ψ yields a distribution of values. The expectation value of this distribution is given by the expression
This mathematical machinery gives a simple, direct way to compute a statistical property of the outcome of an experiment, once it is understood how to associate the initial state with a Hilbert space vector, and the measured quantity with an observable (that is, a specific Hermitian operator).
As an example of such a computation, the probability of finding the system in a given state is given by computing the expectation value of a (rank-1) projection operator
The probability is then the non-negative real number given by
By abuse of language, a bare instrumentalist description could be referred to as an interpretation, although this usage is somewhat misleading since instrumentalism explicitly avoids any explanatory role; that is, it does not attempt to answer the question why.
Read more about this topic: Interpretations Of Quantum Mechanics