Data Rates
Unit | Symbol | Bits | Bytes | |
Kilobit per second | (103) | kbit/s | 1,000 bit/s | 125 bytes/s |
Megabit/s | (106) | Mbit/s | 1,000 kbit/s | 125 kB/s |
Gigabit/s | (109) | Gbit/s | 1,000 Mbit/s | 125 MB/s |
Terabit/s | (1012) | Tbit/s | 1,000 Gbit/s | 125 GB/s |
Petabit/s | (1015) | Pbit/s | 1,000 Tbit/s | 125 TB/s |
Unit | Symbol | Bits | Bytes | |
Kilobyte per second | (103) | kB/s | 8,000 bit/s | 1,000 bytes/s |
Megabyte/s | (106) | MB/s | 8,000 kbit/s | 1,000 kB/s |
Gigabyte/s | (109) | GB/s | 8,000 Mbit/s | 1,000 MB/s |
Terabyte/s | (1012) | TB/s | 8,000 Gbit/s | 1,000 GB/s |
Petabyte/s | (1015) | PB/s | 8,000 Tbit/s | 1,000 TB/s |
The bit rates for dial-up modems range from as little as 110 bit/s in the late 1950s, to a maximum of from 33 to 64 kbit/s (V.90 and V.92) in the late 1990s. Dial-up connections generally require the dedicated use of a telephone line. Data compression can boost the effective bit rate for a dial-up modem connection to from 220 (V.42bis) to 320 (V.44) kbit/s. However, the effectiveness of data compression is quite variable, depending on the type of data being sent, the condition of the telephone line, and a number of other factors. In reality, the overall data rate rarely exceeds 150 kbit/s.
Broadband technologies supply considerably higher bit rates than dial-up, generally without disrupting regular telephone use. Various minimum data rates and maximum latencies have been used in definitions of broadband, ranging from 64 kbit/s up to 4.0 Mbit/s. In 1988 the CCITT standards body defined "broadband service" as requiring transmission channels capable of supporting bit rates greater than the primary rate which ranged from about 1.5 to 2 Mbit/s. A 2006 Organization for Economic Co-operation and Development (OECD) report defined broadband as having download data transfer rates equal to or faster than 256 kbit/s. And in 2010 the U.S. Federal Communications Commission (FCC) defined "Basic Broadband" as data transmission speeds of at least 4 Mbit/s downstream (from the Internet to the user’s computer) and 1 Mbit/s upstream (from the user’s computer to the Internet). The trend is to raise the threshold of the broadband definition as higher data rate services become available.
The higher data rate dial-up modems and many broadband services are "asymmetric"—supporting much higher data rates for download (toward the user) than for upload (toward the Internet).
Data rates, including those given in this article, are usually defined and advertised in terms of the maximum or peak download rate. In practice, these maximum data rates are not always reliably available to the customer. Actual end-to-end data rates can be lower due to a number of factors. Physical link quality can vary with distance and for wireless access with terrain, weather, building construction, antenna placement, and interference from other radio sources. Network bottlenecks may exist at points anywhere on the path from the end-user to the remote server or service being used and not just on the first or last link providing Internet access to the end-user.
Users may share access over a common network infrastructure. Since most users do not use their full connection capacity all of the time, this aggregation strategy (known as contended service) usually works well and users can burst to their full data rate at least for brief periods. However, peer-to-peer (P2P) file sharing and high quality streaming video can require high data rates for extended periods, which violates these assumptions and can cause a service to become oversubscribed, resulting in congestion and poor performance. The TCP protocol includes flow-control mechanisms that automatically throttle back on the bandwidth being used during periods of network congestion. This is fair in the sense that all users that experience congestion receive less bandwidth, but it can be frustrating for customers and a major problem for ISPs. In some cases the amount of bandwidth actually available may fall below the threshold required to support a particular service such as video conferencing or streaming live video–effectively making the service unavailable.
When traffic is particularly heavy, an ISP can deliberately throttle back the bandwidth available to classes of users or for particular services. This is known as traffic shaping and careful use can ensure a better quality of service for time critical services even on extremely busy networks. However, overuse can lead to concerns about fairness and network neutrality or even charges of censorship, when some types of traffic are severely or completely blocked.
Read more about this topic: Internet Access
Famous quotes containing the words data and/or rates:
“This city is neither a jungle nor the moon.... In long shot: a cosmic smudge, a conglomerate of bleeding energies. Close up, it is a fairly legible printed circuit, a transistorized labyrinth of beastly tracks, a data bank for asthmatic voice-prints.”
—Susan Sontag (b. 1933)
“[The] elderly and timid single gentleman in Paris ... never drove down the Champs Elysees without expecting an accident, and commonly witnessing one; or found himself in the neighborhood of an official without calculating the chances of a bomb. So long as the rates of progress held good, these bombs would double in force and number every ten years.”
—Henry Brooks Adams (18381918)