Internal Set Theory
Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the non-standard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, the axioms introduce a new term, "standard", which can be used to make discriminations not possible under the conventional axioms for sets. Thus, IST is an enrichment of ZFC: all axioms of ZFC are satisfied for all classical predicates, while the new unary predicate "standard" satisfies three additional axioms I, S, and T. In particular, suitable non-standard elements within the set of real numbers can be shown to have properties that correspond to the properties of infinitesimal and unlimited elements.
Nelson's formulation is made more accessible for the lay-mathematician by leaving out many of the complexities of meta-mathematical logic that were initially required to justify rigorously the consistency of infinitesimal elements.
Read more about Internal Set Theory: Intuitive Justification, Formal Axioms For IST, Formal Justification For The Axioms
Famous quotes containing the words internal, set and/or theory:
“When a person doesnt understand something, he feels internal discord: however he doesnt search for that discord in himself, as he should, but searches outside of himself. Thence a war develops with that which he doesnt understand.”
—Anton Pavlovich Chekhov (18601904)
“Do I terrify?
The nose, the eye pits, the full set of teeth?
The sour breath
Will vanish in a day.”
—Sylvia Plath (19321963)
“Everything to which we concede existence is a posit from the standpoint of a description of the theory-building process, and simultaneously real from the standpoint of the theory that is being built. Nor let us look down on the standpoint of the theory as make-believe; for we can never do better than occupy the standpoint of some theory or other, the best we can muster at the time.”
—Willard Van Orman Quine (b. 1908)