Internal Set Theory
Internal set theory (IST) is a mathematical theory of sets developed by Edward Nelson that provides an axiomatic basis for a portion of the non-standard analysis introduced by Abraham Robinson. Instead of adding new elements to the real numbers, the axioms introduce a new term, "standard", which can be used to make discriminations not possible under the conventional axioms for sets. Thus, IST is an enrichment of ZFC: all axioms of ZFC are satisfied for all classical predicates, while the new unary predicate "standard" satisfies three additional axioms I, S, and T. In particular, suitable non-standard elements within the set of real numbers can be shown to have properties that correspond to the properties of infinitesimal and unlimited elements.
Nelson's formulation is made more accessible for the lay-mathematician by leaving out many of the complexities of meta-mathematical logic that were initially required to justify rigorously the consistency of infinitesimal elements.
Read more about Internal Set Theory: Intuitive Justification, Formal Axioms For IST, Formal Justification For The Axioms
Famous quotes containing the words internal, set and/or theory:
“If the Revolution has the right to destroy bridges and art monuments whenever necessary, it will stop still less from laying its hand on any tendency in art which, no matter how great its achievement in form, threatens to disintegrate the revolutionary environment or to arouse the internal forces of the Revolution, that is, the proletariat, the peasantry and the intelligentsia, to a hostile opposition to one another. Our standard is, clearly, political, imperative and intolerant.”
—Leon Trotsky (18791940)
“Here did she fall a tear. Here in this place
Ill set a bank of rue, sour herb-of-grace.
Rue even for ruth here shortly shall be seen
In the remembrance of a weeping queen.”
—William Shakespeare (15641616)
“The struggle for existence holds as much in the intellectual as in the physical world. A theory is a species of thinking, and its right to exist is coextensive with its power of resisting extinction by its rivals.”
—Thomas Henry Huxley (182595)