Transition From Air Cooling
The change of air cooling to liquid cooling occurred at the start of World War II when the US military needed reliable vehicles. The subject of boiling engines was addressed, researched, and a solution found. Previous radiators and engine blocks were properly designed and survived durability tests, but used water pumps with a leaky graphite-lubricated "rope" seal (gland) on the pump shaft. The seal was inherited from steam engines, where water loss is accepted, since steam engines already expend large volumes of water. Because the pump seal leaked mainly when the pump was running and the engine was hot, the water loss evaporated inconspicuously, leaving at best a small rusty trace when the engine stopped and cooled, thereby not revealing significant water loss. Automobile radiators (or heat exchangers) have an outlet that feeds cooled water to the engine and the engine has an outlet that feeds heated water to the top of the radiator. Water circulation is aided by a rotary pump that has only a slight effect, having to work over such a wide range of speeds that its impeller has only a minimal effect as a pump. While running, the leaking pump seal drained cooling water to a level where the pump could no longer return water to the top of the radiator, so water circulation ceased and water in the engine boiled. However, since water loss led to overheat and further water loss from boil-over, the original water loss was hidden.
After isolating the pump problem, cars and trucks built for the war effort (no civilian cars were built during that time) were equipped with carbon-seal water pumps that did not leak and caused no more geysers. Meanwhile, air cooling advanced in memory of boiling engines... even though boil-over was no longer a common problem. Air-cooled engines became popular throughout Europe. After the war, Volkswagen advertised in the USA as not boiling over, even though new water-cooled cars no longer boiled over, but these cars sold well, and without question. But as air quality awareness rose in the 1960s, and laws governing exhaust emissions were passed, unleaded gas replaced leaded gas and leaner fuel mixtures became the norm. These reductions in the cooling effects of both the lead and the formerly rich fuel mixture, led to overheating in the air-cooled engines. Valve failures and other engine damage was the result. Volkswagen responded by abandoning their (flat) horizontally opposed air-cooled engines, while Subaru chose liquid-cooling for their EA series (flat) engine when it was introduced in 1966.
Read more about this topic: Internal Combustion Engine Cooling
Famous quotes containing the words transition from, transition, air and/or cooling:
“Power ceases in the instant of repose; it resides in the moment of transition from a past to a new state, in the shooting of the gulf, in the darting to an aim.”
—Ralph Waldo Emerson (18031882)
“Power ceases in the instant of repose; it resides in the moment of transition from a past to a new state, in the shooting of the gulf, in the darting to an aim.”
—Ralph Waldo Emerson (18031882)
“Odors from decaying food wafting through the air when the door is opened, colorful mold growing between a wet gym uniform and the damp carpet underneath, and the complete supply of bath towels scattered throughout the bedroom can become wonderful opportunities to help your teenager learn once again that the art of living in a community requires compromise, negotiation, and consensus.”
—Barbara Coloroso (20th century)
“As a bathtub lined with white porcelain,
When the hot water gives out or goes tepid,
So is the slow cooling of our chivalrous passion,
O my much praised but-not-altogether-satisfactory lady.”
—Ezra Pound (18851972)