Overview
Heat engines generate mechanical power by extracting energy from heat flows, much as a water wheel extracts mechanical power from a flow of mass falling through a distance. Engines are inefficient, so more heat energy enters the engine than comes out as mechanical power; the difference is waste heat which must be removed. Internal combustion engines remove waste heat through cool intake air, hot exhaust gases, and explicit engine cooling.
Engines with higher efficiency have more energy leave as mechanical motion and less as waste heat. Some waste heat is essential: it guides heat through the engine, much as a water wheel works only if there is some exit velocity (energy) in the waste water to carry it away and make room for more water. Thus, all heat engines need cooling to operate.
Cooling is also needed because high temperatures damage engine materials and lubricants. Internal-combustion engines burn fuel hotter than the melting temperature of engine materials, and hot enough to set fire to lubricants. Engine cooling removes energy fast enough to keep temperatures low so the engine can survive.
Some high-efficiency engines run without explicit cooling and with only accidental heat loss, a design called adiabatic. For example, 10,000 mile-per-gallon "cars" for the Shell economy challenge are insulated, both to transfer as much energy as possible from hot gases to mechanical motion, and to reduce reheat losses when restarting. Such engines can achieve high efficiency but compromise power output, duty cycle, engine weight, durability, and emissions.
Read more about this topic: Internal Combustion Engine Cooling