Generalization Difficulties
It is difficult to make generalizations about air-cooled and liquid-cooled engines. Air-cooled Volkswagen kombis are known for rapid wear in normal use and sometimes sudden failure when driven in hot weather. Alternatively, air-cooled Deutz diesel engines are known for reliability even in extreme heat, and are often used in situations where the engine runs unattended for months at a time.
Similarly, it is usually desirable to minimize the number of heat transfer stages in order to maximize the temperature difference at each stage. However, Detroit Diesel 2-stroke cycle engines commonly use oil cooled by water, with the water in turn cooled by air.
The coolant used in many liquid-cooled engines must be renewed periodically, and can freeze at ordinary temperatures thus causing permanent engine damage. Air-cooled engines do not require coolant service, and do not suffer engine damage from freezing, two commonly cited advantages for air-cooled engines. However, coolant based on propylene glycol is liquid to -55 °C, colder than is encountered by many engines; shrinks slightly when it crystallizes, thus avoiding engine damage; and has a service life over 10,000 hours, essentially the lifetime of many engines.
It is usually more difficult to achieve either low emissions or low noise from an air-cooled engine, two more reasons most road vehicles use liquid-cooled engines. It is also often difficult to build large air-cooled engines, so nearly all air-cooled engines are under 500 kW (670 hp), whereas large liquid-cooled engines exceed 80 MW (107000 hp) (Wärtsilä-Sulzer RTA96-C 14-cylinder diesel).
Read more about this topic: Internal Combustion Engine Cooling
Famous quotes containing the word difficulties:
“All human beings hang by a thread, an abyss may open under their feet at any moment, and yet they have to go and invent all sorts of difficulties for themselves and spoil their lives.”
—Ivan Sergeevich Turgenev (18181883)