Proof
The theorem may be proved as a consequence of the completeness property of the real numbers as follows:
We shall prove the first case f(a) < u < f(b); the second is similar.
Let S be the set of all x in such that f(x) ≤ u. Then S is non-empty since a is an element of S, and S is bounded above by b. Hence, by completeness, the supremum c = sup S exists. That is, c is the lowest number that is greater than or equal to every member of S. We claim that f(c) = u.
- Suppose first that f(c) > u, then f(c) − u > 0. Since f is continuous, there is a δ > 0 such that | f(x) − f(c) | < ε whenever | x − c | < δ. Pick ε = f(c) − u, then | f(x) − f(c) | < f(c) − u. But then, f(x) > f(c) − (f(c) − u) = u whenever | x − c | < δ (that is, f(x) > u for x in (c − δ, c + δ)). This requires that c − δ be an upper bound for S (since no point in the interval (c − δ, c] for which f > u, can be contained in S, and c was defined as the least upper bound for S), an upper bound less than c. The contradiction nullifies this paragraph's opening assumption.
- Suppose instead that f(c) < u. Again, by continuity, there is a δ > 0 such that | f(x) − f(c) | < u − f(c) whenever | x − c | < δ. Then f(x) < f(c) + (u − f(c)) = u for x in (c − δ, c + δ). Since x=c + δ/2 is contained in (c − δ, c + δ), it also satisfies f(x) < u, so it must be contained in S. However, it also exceeds the least upper bound c of S. The contradiction nullifies this paragraph's opening assumption, as well.
We deduce that f(c) = u as stated.
An alternative proof may be found at non-standard calculus.
Read more about this topic: Intermediate Value Theorem
Famous quotes containing the word proof:
“The moment a man begins to talk about technique thats proof that he is fresh out of ideas.”
—Raymond Chandler (18881959)
“When children feel good about themselves, its like a snowball rolling downhill. They are continually able to recognize and integrate new proof of their value as they grow and mature.”
—Stephanie Martson (20th century)
“O, popular applause! what heart of man
Is proof against thy sweet, seducing charms?”
—William Cowper (17311800)