Interior Product - Definition

Definition

It is defined to be the contraction of a differential form with a vector field. Thus if X is a vector field on the manifold M, then

is the map which sends a p-form ω to the (p−1)-form ιXω defined by the property that

for any vector fields X1,..., Xp−1.

The interior product is the unique antiderivation of degree −1 on the exterior algebra such that on one-forms α

,

the duality pairing between α and the vector X. Explicitly, if β is a p-form and γ is a q-form, then

The above relation says that the interior product obeys a graded Leibniz rule. An operation equipped with linearity and a Leibniz rule is often called a derivative. The interior product is also known as the interior derivative.

Read more about this topic:  Interior Product

Famous quotes containing the word definition:

    The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.
    William James (1842–1910)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)

    One definition of man is “an intelligence served by organs.”
    Ralph Waldo Emerson (1803–1882)