Definition
It is defined to be the contraction of a differential form with a vector field. Thus if X is a vector field on the manifold M, then
is the map which sends a p-form ω to the (p−1)-form ιXω defined by the property that
for any vector fields X1,..., Xp−1.
The interior product is the unique antiderivation of degree −1 on the exterior algebra such that on one-forms α
- ,
the duality pairing between α and the vector X. Explicitly, if β is a p-form and γ is a q-form, then
The above relation says that the interior product obeys a graded Leibniz rule. An operation equipped with linearity and a Leibniz rule is often called a derivative. The interior product is also known as the interior derivative.
Read more about this topic: Interior Product
Famous quotes containing the word definition:
“The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.”
—Jean Baudrillard (b. 1929)
“One definition of man is an intelligence served by organs.”
—Ralph Waldo Emerson (18031882)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)