Definition
It is defined to be the contraction of a differential form with a vector field. Thus if X is a vector field on the manifold M, then
is the map which sends a p-form ω to the (p−1)-form ιXω defined by the property that
for any vector fields X1,..., Xp−1.
The interior product is the unique antiderivation of degree −1 on the exterior algebra such that on one-forms α
- ,
the duality pairing between α and the vector X. Explicitly, if β is a p-form and γ is a q-form, then
The above relation says that the interior product obeys a graded Leibniz rule. An operation equipped with linearity and a Leibniz rule is often called a derivative. The interior product is also known as the interior derivative.
Read more about this topic: Interior Product
Famous quotes containing the word definition:
“The definition of good prose is proper words in their proper places; of good verse, the most proper words in their proper places. The propriety is in either case relative. The words in prose ought to express the intended meaning, and no more; if they attract attention to themselves, it is, in general, a fault.”
—Samuel Taylor Coleridge (17721834)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)