Interior Algebra - Open and Closed Elements

Open and Closed Elements

Elements of an interior algebra satisfying the condition xI = x are called open. The complements of open elements are called closed and are characterized by the condition xC = x. An interior of an element is always open and the closure of an element is always closed. Interiors of closed elements are called regular open and closures of open elements are called regular closed. Elements which are both open and closed are called clopen. 0 and 1 are clopen.

An interior algebra is called Boolean if all its elements are open (and hence clopen). Boolean interior algebras can be identified with ordinary Boolean algebras as their interior and closure operators provide no meaningful additional structure. A special case is the class of trivial interior algebras which are the single element interior algebras characterized by the identity 0 = 1.

Read more about this topic:  Interior Algebra

Famous quotes containing the words open, closed and/or elements:

    Each man has his own vocation. The talent is the call. There is one direction in which all space is open to him. He has faculties silently inviting him thither to endless exertion. He is like a ship in the river; he runs against obstructions on every side but one; on that side all obstruction is taken away, and he sweeps serenely over a deepening channel into an infinite sea.
    Ralph Waldo Emerson (1803–1882)

    A closed mouth catches no flies.
    Miguel De Cervantes (1547–1616)

    The two elements the traveler first captures in the big city are extrahuman architecture and furious rhythm. Geometry and anguish. At first glance, the rhythm may be confused with gaiety, but when you look more closely at the mechanism of social life and the painful slavery of both men and machines, you see that it is nothing but a kind of typical, empty anguish that makes even crime and gangs forgivable means of escape.
    Federico García Lorca (1898–1936)