The interesting number paradox is a semi-humorous paradox that arises from attempting to classify natural numbers as "interesting" or "dull". The paradox states that all natural numbers are interesting. The "proof" is by contradiction: if there exists a non-empty set of uninteresting numbers, there would be a smallest uninteresting number – but the smallest uninteresting number is itself interesting because it is the smallest uninteresting number, producing a contradiction.
Read more about Interesting Number Paradox: Proof, Paradoxical Nature
Famous quotes containing the words interesting, number and/or paradox:
“Like everything which is not the involuntary result of fleeting emotion but the creation of time and will, any marriage, happy or unhappy, is infinitely more interesting than any romance, however passionate.”
—W.H. (Wystan Hugh)
“The two great points of difference between a democracy and a republic are: first, the delegation of the government, in the latter, to a small number of citizens elected by the rest; secondly, the greater number of citizens and greater sphere of country over which the latter may be extended.”
—James Madison (17511836)
“The conclusion suggested by these arguments might be called the paradox of theorizing. It asserts that if the terms and the general principles of a scientific theory serve their purpose, i. e., if they establish the definite connections among observable phenomena, then they can be dispensed with since any chain of laws and interpretive statements establishing such a connection should then be replaceable by a law which directly links observational antecedents to observational consequents.”
—C.G. (Carl Gustav)