Mathematical Description
If a point source is radiating energy in three dimensions and there is no energy lost to the medium, then the intensity decreases in proportion to distance from the object squared. This is due to physics and geometry. Physically, conservation of energy applies. The consequence of this is that the net power coming from the source must be constant, thus:
where P is the net power radiated, I is the intensity as a function of position, and dA is a differential element of a closed surface that contains the source. That P is a constant. If we integrate over a surface of uniform intensity I, for instance over a sphere centered around a point source radiating equally in all directions, the equation becomes:
where I is the intensity at the surface of the sphere, and r is the radius of the sphere. ( is the expression for the surface area of a sphere). Solving for I, we get:
If the medium is damped, then the intensity drops off more quickly than the above equation suggests.
Anything that can carry energy can have an intensity associated with it. For an electromagnetic wave, if E is the complex amplitude of the electric field, then the time-averaged energy density of the wave is given by
- ,
and the intensity is obtained by multiplying this expression by the velocity of the wave, :
- ,
where n is the refractive index, is the speed of light in vacuum and is the vacuum permittivity.
The treatment above does not hold for electromagnetic fields that are not radiating, such as for an evanescent wave. In these cases, the intensity can be defined as the magnitude of the Poynting vector.
Read more about this topic: Intensity (physics)
Famous quotes containing the words mathematical and/or description:
“An accurate charting of the American womans progress through history might look more like a corkscrew tilted slightly to one side, its loops inching closer to the line of freedom with the passage of timebut like a mathematical curve approaching infinity, never touching its goal. . . . Each time, the spiral turns her back just short of the finish line.”
—Susan Faludi (20th century)
“The Sage of Toronto ... spent several decades marveling at the numerous freedoms created by a global village instantly and effortlessly accessible to all. Villages, unlike towns, have always been ruled by conformism, isolation, petty surveillance, boredom and repetitive malicious gossip about the same families. Which is a precise enough description of the global spectacles present vulgarity.”
—Guy Debord (b. 1931)