Intel QuickPath Interconnect - Implementation

Implementation

The QPI is an element of a system architecture that Intel calls the QuickPath architecture that implements what Intel calls QuickPath technology. In its simplest form on a single-processor motherboard, a single QPI is used to connect the processor to the IO Hub (e.g., to connect an Intel Core i7 to an X58). In more complex instances of the architecture, separate QPI link pairs connect one or more processors and one or more IO hubs or routing hubs in a network on the motherboard, allowing all of the components to access other components via the network. As with HyperTransport, the QuickPath Architecture assumes that the processors will have integrated memory controllers, and enables a non-uniform memory access (NUMA) architecture. It was first released in Xeon processors in March 2009 and Itanium processors in February 2010.

Each QPI comprises two 20-lane point-to-point data links, one in each direction (full duplex), with a separate clock pair in each direction, for a total of 42 signals. Each signal is a differential pair, so the total number of pins is 84. The 20 data lanes are divided onto four "quadrants" of 5 lanes each. The basic unit of transfer is the 80-bit "flit", which is transferred in two clock cycles (four 20 bit transfers, two per clock.) The 80-bit "flit" has 8 bits for error detection, 8 bits for "link-layer header," and 64 bits for "data". QPI bandwidths are advertised by computing the transfer of 64 bits (8 bytes) of data every two clock cycles in each direction.

Although the initial implementations use single four-quadrant links, the QPI specification permits other implementations. Each quadrant can be used independently. On high-reliability servers, a QPI link can operate in a degraded mode. If one or more of the 20+1 signals fails, the interface will operate using 10+1 or even 5+1 remaining signals, even reassigning the clock to a data signal if the clock fails.

The initial Nehalem implementation uses a full four-quadrant interface to achieve 25.6 GB/s, which provides exactly double the theoretical bandwidth of Intel's 1600 MHz FSB used in the X48 chipset.

Although some Core i7 processors use QPI, other Nehalem desktop and mobile processors (e.g. Core i3, Core i5, and other Core i7 processors) do not—at least in any externally accessible fashion. These processors cannot participate in a multiprocessor system. Instead, they directly implement the DMI and PCI-e interfaces, obviating the need for a "northside" device or a processor bus of any type.

Read more about this topic:  Intel QuickPath Interconnect