Integrating Factor - General Use

General Use

An integrating factor is any expression that a differential equation is multiplied by to facilitate integration and is not restricted to first order linear equations. For example, the nonlinear second order equation

admits as an integrating factor:

To integrate, note that both sides of the equation may be expressed as derivatives by going backwards with the chain rule:

Therefore

This form may be more useful, depending on application. Performing a separation of variables will give:

this is an implicit solution which involves a nonelementary integral. Though likely too obscure to be useful, this is a general solution. Also, because the previous equation is first order, it could be used for numeric solution in favor of the original equation.

Read more about this topic:  Integrating Factor

Famous quotes containing the word general:

    Everyone confesses in the abstract that exertion which brings out all the powers of body and mind is the best thing for us all; but practically most people do all they can to get rid of it, and as a general rule nobody does much more than circumstances drive them to do.
    Harriet Beecher Stowe (1811–1896)

    As a general rule never take your whole fee in advance, nor any more than a small retainer. When fully paid beforehand, you are more than a common mortal if you can feel the same interest in the case, as if something was still in prospect for you, as well as for your client.
    Abraham Lincoln (1809–1865)