Integrating Factor - General Use

General Use

An integrating factor is any expression that a differential equation is multiplied by to facilitate integration and is not restricted to first order linear equations. For example, the nonlinear second order equation

admits as an integrating factor:

To integrate, note that both sides of the equation may be expressed as derivatives by going backwards with the chain rule:

Therefore

This form may be more useful, depending on application. Performing a separation of variables will give:

this is an implicit solution which involves a nonelementary integral. Though likely too obscure to be useful, this is a general solution. Also, because the previous equation is first order, it could be used for numeric solution in favor of the original equation.

Read more about this topic:  Integrating Factor

Famous quotes containing the word general:

    The world can doubtless never be well known by theory: practice is absolutely necessary; but surely it is of great use to a young man, before he sets out for that country, full of mazes, windings, and turnings, to have at least a general map of it, made by some experienced traveller.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    ‘A thing is called by a certain name because it instantiates a certain universal’ is obviously circular when particularized, but it looks imposing when left in this general form. And it looks imposing in this general form largely because of the inveterate philosophical habit of treating the shadows cast by words and sentences as if they were separately identifiable. Universals, like facts and propositions, are such shadows.
    David Pears (b. 1921)