Classical Context
Integral geometry as such first emerged as an attempt to refine certain statements of geometric probability theory. The early work of Luis Santaló and Wilhelm Blaschke was in this connection. It follows from the classic theorem of Crofton expressing the length of a plane curve as an expectation of the number of intersections with a random line. Here the word 'random' must be interpreted as subject to correct symmetry considerations.
There is a sample space of lines, one on which the affine group of the plane acts. A probability measure is sought on this space, invariant under the symmetry group. If, as in this case, we can find a unique such invariant measure, that solves the problem of formulating accurately what 'random line' means; and expectations become integrals with respect to that measure. (Note for example that the phrase 'random chord of a circle' can be used to construct some paradoxes.)
We can therefore say that integral geometry in this sense is the application of probability theory (as axiomatized by Kolmogorov) in the context of the Erlangen programme of Klein. The content of the theory is effectively that of invariant (smooth) measures on (preferably compact) homogeneous spaces of Lie groups; and the evaluation of integrals of differential forms arising.
A very celebrated case is the problem of Buffon's needle: drop a needle on a floor made of planks and calculate the probability the needle lies across a crack. Generalising, this theory is applied to various stochastic processes concerned with geometric and incidence questions. See stochastic geometry.
One of the most interesting theorems in this form of integral geometry is Hadwiger's theorem.
The more recent meaning of integral geometry is that of Israel Gelfand. It deals more specifically with integral transforms, modelled on the Radon transform. Here the underlying geometrical incidence relation (points lying on lines, in Crofton's case) is seen in a freer light, as the site for an integral transform composed as pullback onto the incidence graph and then push forward.
Read more about this topic: Integral Geometry
Famous quotes containing the words classical and/or context:
“Compare the history of the novel to that of rock n roll. Both started out a minority taste, became a mass taste, and then splintered into several subgenres. Both have been the typical cultural expressions of classes and epochs. Both started out aggressively fighting for their share of attention, novels attacking the drama, the tract, and the poem, rock attacking jazz and pop and rolling over classical music.”
—W. T. Lhamon, U.S. educator, critic. Material Differences, Deliberate Speed: The Origins of a Cultural Style in the American 1950s, Smithsonian (1990)
“The hippie is the scion of surplus value. The dropout can only claim sanctity in a society which offers something to be dropped out ofcareer, ambition, conspicuous consumption. The effects of hippie sanctimony can only be felt in the context of others who plunder his lifestyle for what they find good or profitable, a process known as rip-off by the hippie, who will not see how savagely he has pillaged intricate and demanding civilizations for his own parodic lifestyle.”
—Germaine Greer (b. 1939)