Integral Geometry - Classical Context

Classical Context

Integral geometry as such first emerged as an attempt to refine certain statements of geometric probability theory. The early work of Luis Santaló and Wilhelm Blaschke was in this connection. It follows from the classic theorem of Crofton expressing the length of a plane curve as an expectation of the number of intersections with a random line. Here the word 'random' must be interpreted as subject to correct symmetry considerations.

There is a sample space of lines, one on which the affine group of the plane acts. A probability measure is sought on this space, invariant under the symmetry group. If, as in this case, we can find a unique such invariant measure, that solves the problem of formulating accurately what 'random line' means; and expectations become integrals with respect to that measure. (Note for example that the phrase 'random chord of a circle' can be used to construct some paradoxes.)

We can therefore say that integral geometry in this sense is the application of probability theory (as axiomatized by Kolmogorov) in the context of the Erlangen programme of Klein. The content of the theory is effectively that of invariant (smooth) measures on (preferably compact) homogeneous spaces of Lie groups; and the evaluation of integrals of differential forms arising.

A very celebrated case is the problem of Buffon's needle: drop a needle on a floor made of planks and calculate the probability the needle lies across a crack. Generalising, this theory is applied to various stochastic processes concerned with geometric and incidence questions. See stochastic geometry.

One of the most interesting theorems in this form of integral geometry is Hadwiger's theorem.

The more recent meaning of integral geometry is that of Israel Gelfand. It deals more specifically with integral transforms, modelled on the Radon transform. Here the underlying geometrical incidence relation (points lying on lines, in Crofton's case) is seen in a freer light, as the site for an integral transform composed as pullback onto the incidence graph and then push forward.

Read more about this topic:  Integral Geometry

Famous quotes containing the words classical and/or context:

    Several classical sayings that one likes to repeat had quite a different meaning from the ones later times attributed to them.
    Johann Wolfgang Von Goethe (1749–1832)

    Parents are led to believe that they must be consistent, that is, always respond to the same issue the same way. Consistency is good up to a point but your child also needs to understand context and subtlety . . . much of adult life is governed by context: what is appropriate in one setting is not appropriate in another; the way something is said may be more important than what is said. . . .
    Stanley I. Greenspan (20th century)