If R is a given integral domain, the smallest field containing R as a subring is uniquely determined up to isomorphism and is called the field of fractions or quotient field of R. It can be thought of as consisting of all fractions a/b with a and b in R and b ≠ 0, modulo an appropriate equivalence relation. The field of fractions of the integers is the field of rational numbers. The field of fractions of a field is isomorphic to the field itself.
Read more about this topic: Integral Domain
Famous quotes containing the words field of and/or field:
“... many American Jews have a morbid tendency to exaggerate their handicaps and difficulties. ... There is no doubt that the Jew ... has to be twice as good as the average non- Jew to succeed in many a field of endeavor. But to dwell upon these injustices to the point of self-pity is to weaken the personality unnecessarily. Every human being has handicaps of one sort or another. The brave individual accepts them and by accepting conquers them.”
—Agnes E. Meyer (18871970)
“I dont like comparisons with football. Baseball is an entirely different game. You can watch a tight, well-played football game, but it isnt exciting if half the stadium is empty. The violence on the field must bounce off a lot of people. But you can go to a ball park on a quiet Tuesday afternoon with only a few thousand people in the place and thoroughly enjoy a one-sided game. Baseball has an aesthetic, intellectual appeal found in no other team sport.”
—Bowie Kuhn (b. 1926)