Integral Domain - Field of Fractions

If R is a given integral domain, the smallest field containing R as a subring is uniquely determined up to isomorphism and is called the field of fractions or quotient field of R. It can be thought of as consisting of all fractions a/b with a and b in R and b ≠ 0, modulo an appropriate equivalence relation. The field of fractions of the integers is the field of rational numbers. The field of fractions of a field is isomorphic to the field itself.

Read more about this topic:  Integral Domain

Famous quotes containing the words field of and/or field:

    Hardly a book of human worth, be it heaven’s own secret, is honestly placed before the reader; it is either shunned, given a Periclean funeral oration in a hundred and fifty words, or interred in the potter’s field of the newspapers’ back pages.
    Edward Dahlberg (1900–1977)

    We need a type of theatre which not only releases the feelings, insights and impulses possible within the particular historical field of human relations in which the action takes place, but employs and encourages those thoughts and feelings which help transform the field itself.
    Bertolt Brecht (1898–1956)