Integral Curve - Definition

Definition

Suppose that F is a vector field: that is, a vector-valued function with cartesian coordinates (F1,F2,...,Fn); and x(t) a parametric curve with cartesian coordinates (x1(t),x2(t),...,xn(t)). Then x(t) is an integral curve of F if it is a solution of the following autonomous system of ordinary differential equations:

\begin{align}
\frac{dx_1}{dt} &= F_1(x_1,\ldots,x_n) \\
&\vdots \\
\frac{dx_n}{dt} &= F_n(x_1,\ldots,x_n).
\end{align}

Such a system may be written as a single vector equation

This equation says precisely that the tangent vector to the curve at any point x(t) along the curve is precisely the vector F(x(t)), and so the curve x(t) is tangent at each point to the vector field F.

If a given vector field is Lipschitz continuous, then the Picard–Lindelöf theorem implies that there exists a unique flow for small time.

Read more about this topic:  Integral Curve

Famous quotes containing the word definition:

    According to our social pyramid, all men who feel displaced racially, culturally, and/or because of economic hardships will turn on those whom they feel they can order and humiliate, usually women, children, and animals—just as they have been ordered and humiliated by those privileged few who are in power. However, this definition does not explain why there are privileged men who behave this way toward women.
    Ana Castillo (b. 1953)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)