Inscribed Angle - Property

Property

An inscribed angle is said to intersect an arc on the circle. The arc is the portion of the circle that is in the interior of the angle. The measure of the intercepted arc (equal to its central angle) is exactly twice the measure of the inscribed angle.

This single property has a number of consequences within the circle. For example, it allows one to prove that when two chords intersect in a circle, the products of the lengths of their pieces are equal. It also allows one to prove that the opposite angles of a cyclic quadrilateral are supplementary.

Read more about this topic:  Inscribed Angle

Famous quotes containing the word property:

    I have no concern with any economic criticisms of the communist system; I cannot enquire into whether the abolition of private property is expedient or advantageous. But I am able to recognize that the psychological premises on which the system is based are an untenable illusion. In abolishing private property we deprive the human love of aggression of one of its instruments ... but we have in no way altered the differences in power and influence which are misused by aggressiveness.
    Sigmund Freud (1856–1939)

    No man acquires property without acquiring with it a little arithmetic, also.
    Ralph Waldo Emerson (1803–1882)

    A lawyer’s dream of Heaven: Every man reclaimed his own property at the resurrection, and each tried to recover it from all his forefathers.
    Samuel Butler (1835–1902)