Inner and Outer Automorphism Groups
The composition of two inner automorphisms is again an inner automorphism (as mentioned above: (xa)b=xab, and with this operation, the collection of all inner automorphisms of G is itself a group, the inner automorphism group of G denoted Inn(G).
Inn(G) is a normal subgroup of the full automorphism group Aut(G) of G. The quotient group
- Aut(G)/Inn(G)
is known as the outer automorphism group Out(G). The outer automorphism group measures, in a sense, how many automorphisms of G are not inner. Every non-inner automorphism yields a non-trivial element of Out(G), but different non-inner automorphisms may yield the same element of Out(G).
By associating the element a in G with the inner automorphism ƒ(x) = xa in Inn(G) as above, one obtains an isomorphism between the quotient group G/Z(G) (where Z(G) is the center of G) and the inner automorphism group:
- G/Z(G) = Inn(G).
This is a consequence of the first isomorphism theorem, because Z(G) is precisely the set of those elements of G that give the identity mapping as corresponding inner automorphism (conjugation changes nothing).
Read more about this topic: Inner Automorphism
Famous quotes containing the words outer and/or groups:
“The Dada object reflected an ironic posture before the consecrated forms of art. The surrealist object differs significantly in this respect. It stands for a mysterious relationship with the outer world established by mans sensibility in a way that involves concrete forms in projecting the artists inner model.”
—J.H. Matthews. Object Lessons, The Imagery of Surrealism, Syracuse University Press (1977)
“... until both employers and workers groups assume responsibility for chastising their own recalcitrant children, they can vainly bay the moon about ignorant and unfair public criticism. Moreover, their failure to impose voluntarily upon their own groups codes of decency and honor will result in more and more necessity for government control.”
—Mary Barnett Gilson (1877?)