Inner and Outer Automorphism Groups
The composition of two inner automorphisms is again an inner automorphism (as mentioned above: (xa)b=xab, and with this operation, the collection of all inner automorphisms of G is itself a group, the inner automorphism group of G denoted Inn(G).
Inn(G) is a normal subgroup of the full automorphism group Aut(G) of G. The quotient group
- Aut(G)/Inn(G)
is known as the outer automorphism group Out(G). The outer automorphism group measures, in a sense, how many automorphisms of G are not inner. Every non-inner automorphism yields a non-trivial element of Out(G), but different non-inner automorphisms may yield the same element of Out(G).
By associating the element a in G with the inner automorphism ƒ(x) = xa in Inn(G) as above, one obtains an isomorphism between the quotient group G/Z(G) (where Z(G) is the center of G) and the inner automorphism group:
- G/Z(G) = Inn(G).
This is a consequence of the first isomorphism theorem, because Z(G) is precisely the set of those elements of G that give the identity mapping as corresponding inner automorphism (conjugation changes nothing).
Read more about this topic: Inner Automorphism
Famous quotes containing the words outer and/or groups:
“So we do not lose heart. Even though our outer nature is wasting away, our inner nature is being renewed day by day.”
—Bible: New Testament, 2 Corinthians 4:16.
“As in political revolutions, so in paradigm choicethere is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.”
—Thomas S. Kuhn (b. 1922)