Inner and Outer Automorphism Groups
The composition of two inner automorphisms is again an inner automorphism (as mentioned above: (xa)b=xab, and with this operation, the collection of all inner automorphisms of G is itself a group, the inner automorphism group of G denoted Inn(G).
Inn(G) is a normal subgroup of the full automorphism group Aut(G) of G. The quotient group
- Aut(G)/Inn(G)
is known as the outer automorphism group Out(G). The outer automorphism group measures, in a sense, how many automorphisms of G are not inner. Every non-inner automorphism yields a non-trivial element of Out(G), but different non-inner automorphisms may yield the same element of Out(G).
By associating the element a in G with the inner automorphism ƒ(x) = xa in Inn(G) as above, one obtains an isomorphism between the quotient group G/Z(G) (where Z(G) is the center of G) and the inner automorphism group:
- G/Z(G) = Inn(G).
This is a consequence of the first isomorphism theorem, because Z(G) is precisely the set of those elements of G that give the identity mapping as corresponding inner automorphism (conjugation changes nothing).
Read more about this topic: Inner Automorphism
Famous quotes containing the words outer and/or groups:
“Once conform, once do what other people do because they do it, and a lethargy steals over all the finer nerves and faculties of the soul. She becomes all outer show and inward emptiness; dull, callous, and indifferent.”
—Virginia Woolf (18821941)
“Under weak government, in a wide, thinly populated country, in the struggle against the raw natural environment and with the free play of economic forces, unified social groups become the transmitters of culture.”
—Johan Huizinga (18721945)