Extension
If G arises as the group of units of a ring A, then an inner automorphism on G can be extended to a projectivity on the projective space over A by inversive ring geometry. In particular, the inner automorphisms of the classical linear groups can be so extended.
Read more about this topic: Inner Automorphism
Famous quotes containing the word extension:
“We know then the existence and nature of the finite, because we also are finite and have extension. We know the existence of the infinite and are ignorant of its nature, because it has extension like us, but not limits like us. But we know neither the existence nor the nature of God, because he has neither extension nor limits.”
—Blaise Pascal (16231662)
“Where there is reverence there is fear, but there is not reverence everywhere that there is fear, because fear presumably has a wider extension than reverence.”
—Socrates (469399 B.C.)
“The motive of science was the extension of man, on all sides, into Nature, till his hands should touch the stars, his eyes see through the earth, his ears understand the language of beast and bird, and the sense of the wind; and, through his sympathy, heaven and earth should talk with him. But that is not our science.”
—Ralph Waldo Emerson (18031882)