Definition
A left module Q over the ring R is injective if it satisfies one (and therefore all) of the following equivalent conditions:
- If Q is a submodule of some other left R-module M, then there exists another submodule K of M such that M is the internal direct sum of Q and K, i.e. Q + K = M and Q ∩ K = {0}.
- Any short exact sequence 0 →Q → M → K → 0 of left R-modules splits.
- If X and Y are left R-modules and f : X → Y is an injective module homomorphism and g : X → Q is an arbitrary module homomorphism, then there exists a module homomorphism h : Y → Q such that hf = g, i.e. such that the following diagram commutes:
- The contravariant functor Hom(-,Q) from the category of left R-modules to the category of abelian groups is exact.
Injective right R-modules are defined in complete analogy.
Read more about this topic: Injective Module
Famous quotes containing the word definition:
“Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.”
—Nadine Gordimer (b. 1923)
“Its a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was mine.”
—Jane Adams (20th century)
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)