In mathematics, an injective function or an injection is a function that preserves distinctness: it never maps distinct elements of its domain to the same element of its codomain. In other words, every element of the function's codomain is mapped to by at most one element of its domain. If in addition all of the elements in the codomain are in fact mapped to by some element of the domain, then the function is said to be bijective (see figures).
An injective function is also said to be a one-to-one function (not to be confused with one-to-one correspondence, i.e. a bijective function). Occasionally, an injective function from X to Y is denoted f: X ↣ Y, using an arrow with a barbed tail. The set of injective functions from X to Y may be denoted YX using a notation derived from that used for falling factorial powers, since if X and Y are finite sets with respectively m and n elements, the number of injections from X to Y is nm (see the twelvefold way).
A function f that is not injective is sometimes called many-to-one. (However, this terminology is also sometimes used to mean "single-valued", i.e., each argument is mapped to at most one value; this is the case for any function, but is used to stress the opposition with multi-valued functions, which are not true functions.)
A monomorphism is a generalization of an injective function in category theory.
Read more about Injective Function: Definition, Examples, Injections Can Be Undone, Injections May Be Made Invertible, Other Properties, Proving That Functions Are One-to-one
Famous quotes containing the word function:
“... The states one function is to give.
The bud must bloom till blowsy blown
Its petals loosen and are strown;
And thats a fate it cant evade
Unless twould rather wilt than fade.”
—Robert Frost (18741963)