Initial Topology - Categorical Description

Categorical Description

In the language of category theory, the initial topology construction can be described as follows. Let Y be the functor from a discrete category J to the category of topological spaces Top which selects the spaces Yj for j in J. Let U be the usual forgetful functor from Top to Set. The maps {fj} can then be thought of as a cone from X to UY. That is, (X, f) is an object of Cone(UY)—the category of cones to UY.

The characteristic property of the initial topology is equivalent to the statement that there exists a universal morphism from the forgetful functor

U′ : Cone(Y) → Cone(UY)

to the cone (X, f). By placing the initial topology on X we therefore obtain a functor

I : Cone(UY) → Cone(Y)

which is right adjoint to the forgetful functor U′. In fact, I is a right-inverse to U′ since UI is the identity functor on Cone(UY).

Read more about this topic:  Initial Topology

Famous quotes containing the words categorical and/or description:

    We do the same thing to parents that we do to children. We insist that they are some kind of categorical abstraction because they produced a child. They were people before that, and they’re still people in all other areas of their lives. But when it comes to the state of parenthood they are abruptly heir to a whole collection of virtues and feelings that are assigned to them with a fine arbitrary disregard for individuality.
    Leontine Young (20th century)

    God damnit, why must all those journalists be such sticklers for detail? Why, they’d hold you to an accurate description of the first time you ever made love, expecting you to remember the color of the room and the shape of the windows.
    Lyndon Baines Johnson (1908–1973)