Equivalent Forms
The following are all equivalent to the above definition:
- a point on a curve at which the second derivative changes sign. This is very similar to the previous definition, since the sign of the curvature is always the same as the sign of the second derivative, but note that the curvature is not the same as the second derivative.
- a point (x, y) on a function, f(x), at which the first derivative, f′(x), is at an extremum, i.e. a (local) minimum or maximum. (This is not the same as saying that y is at an extremum).
- a point p on a curve at which the tangent crosses the curve at that point. For an algebraic curve, this means a non singular point where the multiplicity of the intersection at p of the tangent line and the curve is odd and greater than 2.
Read more about this topic: Inflection Point
Famous quotes containing the words equivalent and/or forms:
“Nobody can deny but religion is a comfort to the distressed, a cordial to the sick, and sometimes a restraint on the wicked; therefore whoever would argue or laugh it out of the world without giving some equivalent for it ought to be treated as a common enemy.”
—Mary Wortley, Lady Montagu (16891762)
“I have always thought that one man of tolerable abilities may work great changes, and accomplish great affairs among mankind, if he first forms a good plan, and, cutting off all amusements or other employments that would divert his attention, make the execution of that same plan his sole study and business.”
—Benjamin Franklin (17061790)