A Necessary But Not Sufficient Condition
If x is an inflection point for f then the second derivative, f″(x), is equal to zero if it exists, but this condition does not provide a sufficient definition of a point of inflection. One also needs the lowest-order (above the second) non-zero derivative to be of odd order (third, fifth, etc.). If the lowest-order non-zero derivative is of even order, the point is not a point of inflection, but a undulation point. However, in algebraic geometry, both inflection points and undulation points are usually called inflection points. An example of such a undulation point is y = x4 for x=0.
It follows from the definition that the sign of f′(x) on either side of the point (x,y) must be the same. If this is positive, the point is a rising point of inflection; if it is negative, the point is a falling point of inflection.
Read more about this topic: Inflection Point
Famous quotes containing the words sufficient and/or condition:
“It would be disingenuous, however, not to point out that some things are considered as morally certain, that is, as having sufficient certainty for application to ordinary life, even though they may be uncertain in relation to the absolute power of God.”
—René Descartes (15961650)
“The personal appropriation of clichés is a condition for the spread of cultural tourism.”
—Serge Daney (19441992)